Multiple Zeta Values online tools
Click the “Activate” button below first.
Your code
Usage
- Click the “Activate” button
- Type your code at the above box.
- Click “Evaluate” button.
- Repeat 2 and 3.
The followings are examples of usage. The author of this page is Minoru Hirose. See github page for the source code.
Symbolic expression for multiple zeta(-star) Value
>>> mzv(1,2)
ζ(3)
>>> mzv(2,3)
1/2*ζ(3)*π^2 - 11/2*ζ(5)
>>> ζ(2,3)
1/2*ζ(3)*π^2 - 11/2*ζ(5)
>>> mzsv(1,2)
2*ζ(3)
>> mzv(1,2,t=1)
2*ζ(3)
Harmonic product
>>> stuffle(index(2), index(5))
index(2,5) + index(5,2) + index(7)
>>> stuffle(index(2,3), index(5))
index(2,3,5) + index(2,5,3) + index(2,8) + index(5,2,3) + index(7,3)
>>> stuffle(-e1*e0, -e1*e0*e0*e0*e0)
-e1*e0^6 + e1*e0^4*e1*e0 + e1*e0*e1*e0^4
Shuffle product
>>> shuffle(e1*e0, e1 )
e1*e0*e1 + 2*e1^2*e0
>>> shuffle(index(2), index(1))
index(2,1) + 2*index(1,2)
Dual of index
>>> dual(e1*e0*e0*e1*e0)
-e1*e0*e1^2*e0
>>> dual(index(3,2))
index(2,1,2)
Hoffman-dual of index
>>> Hoffman_dual( index(3,4) )
index(1,1,2,1,1,1)
Shuffle regularization
>>> shuffle_regularization( index(5,1) )
-index(4,2) - index(3,3) - index(2,4) - 2*index(1,5)
>>> shuffle_regularization( shuffle(index(1,1), index(2,3) ) )
0
>>> shuffle_regularized_mzv(2,1)
-2*ζ(3)
Stuffle regularization
>>> stuffle_regularization( index(5,1) )
-index(1,5) - index(6)
>> stuffle_regularized_mzv(1,1)
-1/12*π^2
Symbolic expression for symmetric multiple zeta(-star) value
>>> shuffle_regularized_symmetric_mzv(3,8)
-4/315*ζ(5)*π^6 - 1/3*ζ(7)*π^4 - 12*ζ(9)*π^2 + 165*ζ(11)
>>> stuffle_regularized_symmetric_mzv(3,8)
-4/315*ζ(5)*π^6 - 1/3*ζ(7)*π^4 - 12*ζ(9)*π^2 + 165*ζ(11)
>>> symmetric_mzv(3,8)
165*ζ(11)
>>> shuffle_regularized_symmetric_mzv(1,1)
0
>>> shuffle_regularized_symmetric_mzsv(1,1) #star-value
1/3*π^2
>>> stuffle_regularized_symmetric_mzv(1,1)
-1/6*π^2
>>> shuffle_regularized_symmetric_mzsv(1,1) # star-value
1/6*π^2