Multiple Zeta Values online tools

Click the “Activate” button below first.

Your code

Usage

  1. Click the “Activate” button
  2. Type your code at the above box.
  3. Click “Evaluate” button.
  4. Repeat 2 and 3.
The followings are examples of usage. The author of this page is Minoru Hirose. See github page for the source code.

Symbolic expression for multiple zeta(-star) Value


>>> mzv(1,2)
ζ(3)

>>> mzv(2,3)
1/2*ζ(3)*π^2 - 11/2*ζ(5)

>>> ζ(2,3)
1/2*ζ(3)*π^2 - 11/2*ζ(5)

>>> mzsv(1,2)
2*ζ(3)

>> mzv(1,2,t=1)
2*ζ(3)


Harmonic product


>>> stuffle(index(2), index(5))
index(2,5) + index(5,2) + index(7)

>>> stuffle(index(2,3), index(5))
index(2,3,5) + index(2,5,3) + index(2,8) + index(5,2,3) + index(7,3)

>>> stuffle(-e1*e0, -e1*e0*e0*e0*e0)
-e1*e0^6 + e1*e0^4*e1*e0 + e1*e0*e1*e0^4

Shuffle product


>>> shuffle(e1*e0, e1 )
e1*e0*e1 + 2*e1^2*e0

>>> shuffle(index(2), index(1))
index(2,1) + 2*index(1,2)

Dual of index


>>> dual(e1*e0*e0*e1*e0)
-e1*e0*e1^2*e0

>>> dual(index(3,2))
index(2,1,2)

Hoffman-dual of index


>>> Hoffman_dual( index(3,4) )
index(1,1,2,1,1,1)

Shuffle regularization


>>> shuffle_regularization( index(5,1) )
-index(4,2) - index(3,3) - index(2,4) - 2*index(1,5)

>>> shuffle_regularization( shuffle(index(1,1), index(2,3) ) )
0

>>> shuffle_regularized_mzv(2,1)
-2*ζ(3)

Stuffle regularization


>>> stuffle_regularization( index(5,1) )
-index(1,5) - index(6)

>> stuffle_regularized_mzv(1,1)
-1/12*π^2

Symbolic expression for symmetric multiple zeta(-star) value


>>> shuffle_regularized_symmetric_mzv(3,8)
-4/315*ζ(5)*π^6 - 1/3*ζ(7)*π^4 - 12*ζ(9)*π^2 + 165*ζ(11)

>>> stuffle_regularized_symmetric_mzv(3,8)
-4/315*ζ(5)*π^6 - 1/3*ζ(7)*π^4 - 12*ζ(9)*π^2 + 165*ζ(11)

>>> symmetric_mzv(3,8)
165*ζ(11)

>>> shuffle_regularized_symmetric_mzv(1,1)
0

>>> shuffle_regularized_symmetric_mzsv(1,1) #star-value
1/3*π^2

>>> stuffle_regularized_symmetric_mzv(1,1)
-1/6*π^2

>>> shuffle_regularized_symmetric_mzsv(1,1) # star-value
1/6*π^2