On the dimension of motivic cyclotomic multiple zeta values

Minoru Hirose Kagoshima University

The 4th International Workshop on Multiple Zeta Values and Related Fields (第四届多重 zeta 值及相关领域国际研讨会)
July 14th, 2025

Today's talk

Introduction and main theorem

Conjectures

Sketch of the proof

Introduction and main theorem

Cyclotomic Multiple Zeta Values

Let $\mu_N := \{ \zeta_N^a \mid a \in \mathbb{Z}/N\mathbb{Z} \}$ be the set of *N*-th roots of unity.

Definition (Cyclotomic Multiple Zeta Values (=CMZVs))

For $k_1, ..., k_d \in \mathbb{Z}_{\geq 1}$ and $\epsilon_1, ..., \epsilon_d \in \mu_N$ such that $(k_d, \epsilon_d) \neq (1,1)$, we define

$$\zeta\begin{pmatrix} k_1, & \dots, & k_d \\ \epsilon_1, & \dots, & \epsilon_d \end{pmatrix} := \sum_{0 < m_1 < \dots < m_d} \frac{\epsilon_1^{m_1} \cdots \epsilon_d^{m_d}}{m_1^{k_1} \cdots m_d^{k_d}}.$$

*
$$\zeta \begin{pmatrix} k_1, & \dots, & k_d \\ 1, & \dots, & 1 \end{pmatrix} = \sum_{0 < m_1 < \dots < m_d} \frac{1}{m_1^{k_1} \cdots m_d^{k_d}} := \zeta(k_1, \dots, k_d)$$

* N: level. $k_1 + \cdots + k_d$: weight. d: depth.

Why do we consider motivic CMZVs?

Let $Z_w^{(N)} := \langle \text{ cyclotomic MZVs of level } N \text{ and weight } w \rangle_{\mathbb{Q}} \subset \mathbb{C}$.

What is $\dim_{\mathbb{Q}} Z_w^{(N)}$?

* In most cases, the determination of $\dim_{\mathbb{Q}} Z_w^{(N)}$ is too difficult because it involves transcendental number theory.

* Thus, we consider the dimension of motivic CMZVs instead for the one of CMZVs.

The motivic CMZVs live in the ring of motivic periods.

$$\rho \text{ (conj. inj.)}$$

$$H^{(N)} \longrightarrow \mathbb{C}$$

$$\psi$$

$$\zeta^{\mathfrak{m}}\begin{pmatrix} k_{1}, & ..., & k_{d} \\ \epsilon_{1}, & ..., & \epsilon_{d} \end{pmatrix}$$

$$\mapsto \zeta\begin{pmatrix} k_{1}, & ..., & k_{d} \\ \epsilon_{1}, & ..., & \epsilon_{d} \end{pmatrix}$$

$$\zeta(k_{1}, & ..., & k_{d} \\ \epsilon_{1}, & ..., & \epsilon_{d} \end{pmatrix}$$

$$CMZVs$$

$$H^{(N)} = \bigoplus_{i=1}^{\infty} H_w^{(N)}$$
: The ring of motivic periods of level N.

We consider the ring of effective motivic periods of mixed Tate motives associated to $\mathbb{Q}(\mu_N)$ and $\langle 1-a\mid a\in\mu_N\backslash\{1\}\rangle\otimes\mathbb{Q}\subset\mathbb{Q}(\mu_N)^\times\otimes\mathbb{Q}$. Furthermore, we take the real part when N=1,2.

Let $Z_w^{(N),\mathfrak{m}} := \left\langle \text{motivic CMZVs of level } N \text{ and weight } w \right\rangle_{\mathbb{Q}} \subset H_w^{(N)}$

The dimension of $H_w^{(N)}$

For $N \ge 1$ and $w \ge 0$, define $d_w^{(N)}$ as follows:

$$\sum_{w=0}^{\infty} d_w^{(N)} t^w := \begin{cases} \frac{1}{1 - t^2 - t^3} & N = 1\\ \frac{1}{1 - t - t^2} & N = 2\\ \frac{1}{1 - (\frac{\varphi(N)}{2} + \nu(N))t + (\nu(N) - 1)t^2} & N \ge 3 \end{cases}$$

(φ is Euler's totient function and $\nu(N)$ is number of prime divisors of N).

Then the dimension of $H_w^{(N)}$ is given by

$$\dim_{\mathbb{Q}} H_w^{(N)} = d_w^{(N)}$$

Upper bound

 $Z^{(N),\mathfrak{m}}\subset H_{w}^{(N)}$ and $\dim_{\mathbb{Q}}H_{w}^{(N)}=d_{w}^{(N)}$ implies the following theorem.

Theorem (Deligne-Goncharov)

For $N \ge 1$ and $w \ge 0$, we have $\dim_{\mathbb{Q}} Z_w^{(N),\mathfrak{m}} \le d_w^{(N)}$.

Consequently, $\dim_{\mathbb{Q}} Z_w^{(N)} \leq d_w^{(N)}$.

The above upper bound is not necessarily strict.

When $\dim_{\mathbb{Q}} Z_w^{(N),\mathfrak{m}} = d_w^{(N)}$ (or equivalently $Z_w^{(N),\mathfrak{m}} = H_w^{(N)}$)?

Previous results

Theorem (Goncharov 2001) --

When $N \geq 5$ is a prime number,

$$\dim_{\mathbb{Q}} Z_2^{(N),\mathfrak{m}} < d_2^{(N)}.$$

Theorem (Deligne 2010 for N = 2,3,4,8; Brown 2012 for N = 1)

For $N \in \{1,2,3,4,8\}$, we have

$$\dim_{\mathbb{Q}} Z_w^{(N),\mathfrak{m}} = d_w^{(N)}.$$

- * The above theorem is equivalent to $Z_w^{(N),\mathfrak{m}}=H_w^{(N)}$ for $N=\{1,2,3,4,8\}$.
- * They also give explicit basis for $Z_w^{(N),\mathfrak{m}}$ for $N = \{1,2,3,4,8\}$.

Main theorem and corollaries (1/2)

From now on, let $p \in \{2,3\}$, q = 6 - p, $N = qp^r$ $(r \ge 0)$.

Theorem (H. 2024+) -

A basis of $H^{(N)}$ is given by

$$\begin{cases} \left| (2\pi i)_{\mathfrak{m}}^{s} \zeta^{\mathfrak{m}} \begin{pmatrix} k_{1}, \dots, k_{d} \\ \zeta_{N}^{a_{1}}, \dots, \zeta_{N}^{a_{d}} \end{pmatrix} \right| s, d \geq 0, k_{1}, \dots, k_{d} \geq 1, a_{1}, \dots, a_{d} \in \mathbb{Z}/N\mathbb{Z} \\ a_{1} \equiv \dots \equiv a_{d-1} \equiv 0, a_{d} \equiv 1 \pmod{q} \end{cases}.$$

Corollary (H.)

We have
$$\dim_{\mathbb{Q}} Z_w^{(N),\mathfrak{m}} = d_w^{(N)}$$
 $(= (p^r + 1)^w)$.

Main theorem and corollaries (2/2)

Corollary (H.)

All motivic CMZVs of level N can be uniquely written as a Q-linear sum of

$$\left\{ (2\pi i)_{\mathfrak{m}}^{s} \zeta^{\mathfrak{m}} \begin{pmatrix} k_{1}, \dots, k_{d} \\ \zeta_{N}^{a_{1}}, \dots, \zeta_{N}^{a_{d}} \end{pmatrix} \middle| \begin{array}{l} s, d \geq 0, \ k_{1}, \dots, k_{d} \geq 1, \ a_{1}, \dots, a_{d} \in \mathbb{Z}/N\mathbb{Z} \\ a_{1} \equiv \dots \equiv a_{d-1} \equiv 0, \ a_{d} \equiv 1 \pmod{q} \end{array} \right\}.$$

Corollary (H.)

All CMZVs of level N can be written as a \mathbb{Q} -linear sum of

$$\left\{ (2\pi i)^{s} \zeta \begin{pmatrix} k_{1}, \dots, k_{d} \\ \zeta_{N}^{a_{1}}, \dots, \zeta_{N}^{a_{d}} \end{pmatrix} \middle| \begin{array}{l} s, d \geq 0, k_{1}, \dots, k_{d} \geq 1, a_{1}, \dots, a_{d} \in \mathbb{Z}/N\mathbb{Z} \\ a_{1} \equiv \dots \equiv a_{d-1} \equiv 0, a_{d} \equiv 1 \pmod{q} \end{array} \right\}.$$

Conjectures

Conjectures about the integral structure

Put
$$\mathbb{Z}_{(p)} = \{a/b \mid b \not\equiv 0 \pmod{p}\}$$

Conjecture -

For $N = qp^r$ with $p \in \{2,3\}$ and q = 6 - p, all CMZVs of level N can be written as a $\mathbb{Z}_{(p)}$ -linear sum of

$$\left\{ \frac{(2\pi i/N)^{s}}{s!} \zeta \begin{pmatrix} k_{1}, \dots, k_{d} \\ \zeta_{N}^{a_{1}}, \dots, \zeta_{N}^{a_{d}} \end{pmatrix} \middle| \begin{array}{l} s, d \geq 0, k_{1}, \dots, k_{d} \geq 1, a_{1}, \dots, a_{d} \in \mathbb{Z}/N\mathbb{Z} \\ a_{1} \equiv \dots \equiv a_{d-1} \equiv 0, a_{d} \equiv 1 \pmod{q} \end{array} \right\}.$$

Conjecture

All MZVs can be written as a $\mathbb{Z}_{(2)}$ -linear sum of

$$\{\zeta(k_1, ..., k_d) \mid k_1, ..., k_d \in \{2,3\}\}.$$

Other levels

Let $N \ge 3$ be a general and put $D_N := \dim_{\mathbb{Q}}(H_2^{(N)}/Z_2^{(N),\mathfrak{m}})$, and thus $\dim_{\mathbb{Q}} Z_2^{(N),\mathfrak{m}} = (\varphi(N)/2 + \nu(N) - 1)^2 + \varphi(N) + \nu(N) - D_N$.

* There is an algorithm to calculate D_N .

* Main theorem implies that $D_{2r} = D_{3r} = 0$.

* Goncharov shows that $D_p = \frac{p^2 - 1}{24}$ for a prime $p \ge 5$.

* It seems those are all known formulas for exact values of D_N .

The case N = 2p or 3p for prime p

What are D_{2p} and D_{3p} ?

Is it similar to D_p ?

p	5	7	11	13	17	19	23	29	31	37	41	43	• • •	83	• • •	113
D_p	1	2	5	7	12	15	22	35	40	57	70	77		330		532
D_{2p}	0	0	0	0	1	0	0	0	2	0	1	2		0		3
D_{3p}	0	0	0	1	0	0	0	0	0	1	4	0		0		

Conjecture (H.-Sato) --

Let f(p) (resp. g(p)) be the order of 2 (resp. 3) in $(\mathbb{Z}/p\mathbb{Z})^{\times}/\{\pm 1\}$.

Then
$$D_{2p} = \frac{p-1}{2f(p)} - 1$$
 and $D_{3p} = \frac{p-1}{2g(p)} - 1$.

Theorem (H.)

Under the same settings, $D_{2p} \ge \frac{p-1}{2f(p)} - 1$ and $D_{3p} \ge \frac{p-1}{2g(p)} - 1$.

The case N = 5p for prime p

p	7	11	13	17	19	23	29	31	37	41	43
D_{5p}	0	2	8	8	1	0	16	6	18	23	0

p	47	53	59	61	67	71	73	79	83	89
D_{5p}	46	26	1	94	2	8	36	1	0	317

I have not found any pattern yet.

Other observations

For $N \leq 400$, the following is true.

*
$$D_{p^2} = {p \choose 4} = \frac{p(p-1)(p-2)(p-3)}{24}$$
 for a prime p .

(This was already conjectured by J. Zhao).

For $a,b \ge 1$ and distinct primes p,q, $D_{p^aq^b} = D_{pq}$.

Sketch of the proof

Hopf structure and coradical filtration (1/2)

Hereafter, we omit (N) from the notation if there is no risk of confusion.

* Put
$$A := H/(2\pi i)_{\mathfrak{m}}$$
 and $\zeta^{\mathfrak{a}}(...) = (\zeta^{\mathfrak{m}}(...) \mod (2\pi i)_{\mathfrak{m}}) \in A$.

* It is known that A has a Hopf algebra structure:

$$\Delta:A\otimes A\to A.$$

* Then Δ define the coradical filtration

$$\{0\} = C_{-1}A \subset C_0A \subset C_1A \subset C_2A \subset \cdots \subset A$$

* Put $\operatorname{gr}_d^C A := C_d A / C_{d-1} A$.

* Δ induces an isomorphism $\operatorname{gr}_d^C A \simeq \operatorname{gr}_{d-1}^C A \otimes \operatorname{gr}_1^C A \simeq \cdots \simeq (\operatorname{gr}_1^C A)^{d \otimes}$.

Hopf structure and coradical filtration (2/2)

- * We write $\zeta^C\begin{pmatrix}k_1,&...,&k_d\\\epsilon_1,&...,&\epsilon_d\end{pmatrix}$ for the image of $\zeta^{\mathfrak{a}}\begin{pmatrix}k_1,&...,&k_d\\\epsilon_1,&...,&\epsilon_d\end{pmatrix}$ in $\operatorname{gr}_d^C A$.
- * The following is a refinement of the main theorem.

Theorem (H.)

For $w \ge d \ge 1$, a basis of $gr_d^C A_w$ is given by

$$\begin{cases} \zeta^{C} \begin{pmatrix} k_{1}, \dots, k_{d} \\ \zeta_{N}^{a_{1}}, \dots, \zeta_{N}^{a_{d}} \end{pmatrix} \middle| \begin{array}{c} k_{1} + \dots + k_{d} = w, \ a_{1}, \dots, a_{d} \in \mathbb{Z}/N\mathbb{Z} \\ a_{1} \equiv \dots \equiv a_{d-1} \equiv 0, \ a_{d} \equiv 1 \pmod{q} \end{cases} \end{cases}.$$

The proof of main theorem is carried out by a purely combinatorial argument.

We only explain the case w = d for simplicity.

Note that $\operatorname{gr}_d^C A_d \simeq A_1^{\otimes d}$ in this case.

Structure of A_1

For
$$a \in \mathbb{Z}/N\mathbb{Z}$$
, put $\langle a \rangle := \zeta^{\mathfrak{a}} \begin{pmatrix} 1 \\ \zeta_N^a \end{pmatrix}$.

Theorem (Deligne-Goncharov)

 $A_1^{(N)}$ is spanned by $\langle a \rangle$ for $a \in \mathbb{Z}/N\mathbb{Z}$ with the following relations:

- $* \langle 0 \rangle = 0,$
- * $\langle a \rangle = \langle -a \rangle$ for $a \in \mathbb{Z}/N\mathbb{Z}$,
- $_*$ $\langle b \rangle = \sum_{aM=b} \langle a \rangle$ for $M \mid N$ and $b \neq 0 \in M\mathbb{Z}/N\mathbb{Z}$.

- * Let $N = qp^r$ with $p \in \{2,3\}, q = 6 p$.
- * Put $W := \bigoplus_{\substack{a \in \mathbb{Z}/N\mathbb{Z} \\ a \equiv 1 \pmod{q}}} \mathbb{Q}[a] \subset \mathbb{Q}[\mathbb{Z}/N\mathbb{Z}].$
- * We can show that the map $W \to A_1$; $[a] \mapsto \langle a \rangle$ is bijective. We denote by $\theta : A_1 \to W$ the inverse of this bijection.
- * We write $[a_1, ..., a_e]$ for $[a_1] \otimes \cdots \otimes [a_d]$.
- * Define $\rho = \rho_d : W^{\otimes d} \to W^{\otimes d}$ by

$$\begin{split} \rho([a_1,...,a_d]) &= [a_1,...,a_d] + \sum_{i=2}^d \left[a_1,...,\widehat{a_i}\,,...,a_d \right] \otimes \theta(\langle a_{i-1} - a_i \rangle) \\ &- \sum_{i=1}^{d-1} \left[a_1,...,\widehat{a_i}\,,...,a_d \right] \otimes \theta(\langle a_{i+1} - a_i \rangle) \end{split}$$

Proof of main theorem (1/4)

Let $\bar{\rho}$ be a modulo p reduction of ρ .

Main theorem (for w = d case)

- $\Leftrightarrow \rho$ is bijective
- $\Leftrightarrow \det(\rho) \neq 0$
- $\Leftarrow \det(\rho) \not\equiv 0 \pmod{p}$
- $\Leftrightarrow \bar{\rho}$ is bijective
- $\Leftarrow \bar{\rho}$ is unipotent

Thus main theorem is proved if the unipotency of $\bar{\rho}$ is proved.

(When $N \in \{3,4,8\}$, $\bar{\rho} = id$)

Proof of main theorem (2/4)

* Let
$$W_p := \bigoplus_{\substack{a \in \mathbb{Z}/N\mathbb{Z} \\ a \equiv 1 \pmod{g}}} \mathbb{F}_p[a] \subset \mathbb{F}_p[\mathbb{Z}/N\mathbb{Z}]$$
 be a mod p reduction of W .

* Define a subgroup G of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ by $G = \{\sigma \equiv 1 \pmod{q}\}$

* For
$$\sigma_1, ..., \sigma_d \in G$$
, define $\Phi_{\sigma_1, ..., \sigma_d} : W_p^{\otimes d} \to W_p^{\otimes d}$ by

$$\Phi_{\sigma_1,...,\sigma_d}([a_1,...,a_d]) := [\tau_1 a_1,...,\tau_d a_d]$$
 where $\tau_j = \prod_{i=1}^J \sigma_i$.

* By linearity, we extend the definition above to $\Phi_{g_1,...,g_d}$ for $g_1,...,g_d \in \mathbb{F}_p[G]$.

Proof of main theorem (3/4)

* For $J=(m_1,n_1,...,m_d,n_d)\in\mathbb{Z}^{2d}$, define $V_J\in W_p^{\otimes d}$ as the subspace spanned by elements of the forms

$$\Phi_{g_1,...,g_d} \left(\sum_{\eta_i \in U(n_i)} [a_1 + \eta_1,...,a_d + \eta_d] \right)$$
 where

*
$$U(n) := \begin{cases} (p^{-n}N)\mathbb{Z}/N\mathbb{Z} & n \le r \\ \emptyset & n > r \end{cases}$$

- * $g_i \in I_G^{m_i}$ where $I_G := \ker(\mathbb{F}_p[G] \to \mathbb{F}_p)$.
- * $a_1, ..., a_d \equiv 1 \mod q$

Note that $V_J = \{0\}$ for all but finitely many J.

Proof of main theorem (4/4)

We say that $J = (n_1, m_1, ..., n_d, m_d) \in \mathbb{Z}^{2d}$ is proper if and only if:

- * $n_i \le n_{i+1}$ for i = 1, ..., d-1.
- * $n_i = n_{i+1} \Rightarrow m_i = 0$ for i = 1,..., d-1.

Lemma

For a proper $J=(m_1,n_1,...,m_d,n_d)$ and $x \in V_J$, we have

$$(\bar{\rho} - \mathrm{id})(v) \in \sum_{J'} V_{J'}$$

where J' runs over all proper tuples greater than J in the lexicographic order.

This lemma implies the unipotency of $\bar{\rho}$, which completes the proof!

Thank you for listening! 谢谢!

Appendix - Table of D_N for $N \le 250$

												_			
$oxedsymbol{N}$	3	4	$5 \mid 6$	$6 \mid 7$	8	9	10	11	12	13	14				
D_N	0	0	$1 \mid 0$	$0 \mid 2$	0	0	0	$\mid 5 \mid$	0	7	0				
$oxed{N}$	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
D_N	0	0	12	0	15	0	0	0	22	0	5	0	0	0	35
$oxed{N}$	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
$oxedsymbol{D_N}$	0	40	0	0	1	0	0	57	0	1	0	70	0	77	0
$oxed{N}$	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
$oxedsymbol{D_N}$	0	0	92	0	35	0	0	0	117	0	2	0	0	0	145
$oxed{N}$	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74
$oxedsymbol{D_N}$	0	155	2	0	0	8	0	187	1	0	0	210	0	222	0
$oxed{N}$	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
$oxedsymbol{D_N}$	0	0	15	0	260	0	0	1	287	0	8	2	0	0	330

Appendix - Table of D_N for $N \le 250$

$oxed{N}$	90	91	92	93	94	95	96	97	98	98	9 10	00	101	102	103	104
D_N	0	32	0	0	0	1	0	392	0	0) (\bigcap	425	0	442	0
$oxed{N}$	105	106	107	108	109	110	112	1 112	2 1	13	114	115	5 116	117	118	119
D_N	0	0	477	0	495	0	1	0	5	32	0	0	0	1	0	72
$oxed{N}$	120	121	122	123	124	125	126	$6 \mid 12'$	7 15	28	129	130	131	132	133	134
D_N	0	330	0	4	2	25	0	672	2 (\bigcap	0	0	715	0	99	0
$oxed{N}$	135	136	137	138	139	140	143	1 142	2 1	43	144	145	5 146	147	148	149
$oxedsymbol{D_N}$	0	1	782	0	805	0	0	0	2	40	0	16	3	0	0	925
$oxed{N}$	150	151	152	153	154	155	156	157	15	58	159	160	161	162	163	164
$oxedsymbol{D_N}$	0	950	0	0	0	6	0	1027	7 ()	0	0	165	0	1107	1
$oxed{N}$	165	166	167	168	169	170	171	. 172	17	73	174	175	176	177	178	179
$oxedsymbol{D_N}$	0	0	1162	0	715	0	0	2	12	47	0	0	0	0	3	1335

Appendix - Table of D_N for $N \le 250$

$oxed{N}$	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194
D_N	0	1365	0	5	0	18	0	440	0	0	0	1520	0	1552	1

$oxed{N}$	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209
D_N	0	0	1617	0	1650	0	2	0	294	0	23	0	0	0	585

N	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224
D_N	0	1855	0	0	0	0	0	345	2	5	0	720	0	2072	0

N	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
D_N	0	3	2147	0	2185	0	0	0	2262	0	46	0	0	0	2380

$oxed{N}$	240	241	242	243	244	245	246	247	248	249	250
D_N	0	2420	0	0	0	0	0	954	2	0	0

See arXiv:2408.15975 for further values.