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Introduction and main 
theorem



ζ (k1, …, kd

1, …, 1 ) = ∑
0<m1<⋯<md

1
mk1

1 ⋯mkd
d

:= ζ(k1, …, kd)

 
For  and  such that  , we define 

.

k1, …, kd ∈ ℤ≥1 ϵ1, …, ϵd ∈ μN (kd, ϵd) ≠ (1,1)

ζ (k1, …, kd
ϵ1, …, ϵd) := ∑

0<m1<⋯<md

ϵm1
1 ⋯ϵmd

d

mk1
1 ⋯mkd

d

Definition (  Cyclotomic Multiple Zeta Values (=CMZVs) )

Let   be the set of -th roots of unity.μN := {ζa
N ∣ a ∈ ℤ/Nℤ} N

Cyclotomic Multiple Zeta Values

 : level.           : weight.         : depth.N k1 + ⋯ + kd d



Why do we consider motivic CMZVs ?

Thus, we consider the dimension of motivic CMZVs instead for 
the one of CMZVs.

In most cases, the determination of  is too difficult 

because it involves transcendental number theory. 

dimℚ Z (N)
w

Let  cyclotomic MZVs of level  and weight    .Z (N)
w := ⟨ N w ⟩ℚ

⊂ ℂ

What is  ?dimℚ Z (N)
w



The motivic CMZVs live in the ring of motivic periods.

Let  motivic CMZVs of level  and weight     Z (N),𝔪
w := ⟨ N w⟩ℚ

⊂ H(N)
w

(
 : The ring of motivic periods of level .H(N) =

∞

⨁
w=0

H(N)
w N

We consider the ring of effective motivic periods of mixed Tate motives 
associated to  and  . 

Furthermore, we take the real part when . 

ℚ(μN) ⟨1 − a ∣ a ∈ μN∖{1}⟩ ⊗ ℚ ⊂ ℚ(μN)× ⊗ ℚ

N = 1,2 )

H(N)

∈
ζ𝔪 (k1, …, kd

ϵ1, …, ϵd)

ℂ

∈

ζ (k1, …, kd
ϵ1, …, ϵd)↦

motivic CMZVs CMZVs

 (conj. inj.)ρ



dimℚ H(N)
w = d (N)

w

Then the dimension of  is given byH(N)
w

The dimension of H(N)
w

∞

∑
w=0

d (N)
w tw :=

1
1 − t2 − t3 N = 1

1
1 − t − t2 N = 2

1
1 − ( φ(N )

2 + ν(N))t + (ν(N) − 1)t2
N ≥ 3

(  is Euler’s totient function and   is number of prime divisors of  ).φ ν(N ) N

For  and , define  as follows:N ≥ 1 w ≥ 0 d (N)
w



The above upper bound is not necessarily strict.  

When   (or equivalently ) ?  dimℚ Z (N),𝔪
w = d (N)

w Z (N),𝔪
w = H(N)

w

Theorem (Deligne-Goncharov)

For  and ,  we have  . 

Consequently, .

N ≥ 1 w ≥ 0 dimℚ Z (N),𝔪
w ≤ d (N)

w

dimℚ Z (N)
w ≤ d (N)

w

  and  implies the following theorem.Z(N),𝔪 ⊂ H(N)
w dimℚ H(N)

w = d (N)
w

Upper bound



Previous results

Theorem (Deligne 2010 for ;  Brown 2012 for )N = 2,3,4,8 N = 1

For , we have 

 .

N ∈ {1,2,3,4,8}

dimℚ Z (N),𝔪
w = d (N)

w

The above theorem is equivalent to   for .Z (N),𝔪
w = H(N)

w N = {1,2,3,4,8}

They also give explicit basis for   for .Z (N),𝔪
w N = {1,2,3,4,8}

Theorem (Goncharov 2001)
When  is a prime number, 

.

N ≥ 5

dimℚ Z(N),𝔪
2 < d(N)

2



Main theorem and corollaries (1/2)

Corollary (H.)
We have     .dimℚ Z (N),𝔪

w = d (N)
w ( = (pr + 1)w)

Theorem (H. 2024+)

A basis of  is given by 

 

H(N)

(2πi)s
𝔪ζ𝔪 (

k1, …, kd

ζa1
N , …, ζad

N )
s, d ≥ 0, k1, …, kd ≥ 1, a1, …, ad ∈ ℤ/Nℤ

a1 ≡ ⋯ ≡ ad−1 ≡ 0, ad ≡ 1 (mod q)
.

From now on,  let , ,   ( ).p ∈ {2,3} q = 6 − p N = qpr r ≥ 0



Corollary (H.)

All motivic CMZVs of level  
can be uniquely written as a -linear sum of

 

N

ℚ

(2πi)s
𝔪ζ𝔪 (

k1, …, kd

ζa1
N , …, ζad

N )
s, d ≥ 0, k1, …, kd ≥ 1, a1, …, ad ∈ ℤ/Nℤ

a1 ≡ ⋯ ≡ ad−1 ≡ 0, ad ≡ 1 (mod q)
.

Corollary (H.)

All CMZVs of level  
can be written as a -linear sum of

 

N

ℚ

(2πi)sζ (
k1, …, kd

ζa1
N , …, ζad

N )
s, d ≥ 0, k1, …, kd ≥ 1, a1, …, ad ∈ ℤ/Nℤ

a1 ≡ ⋯ ≡ ad−1 ≡ 0, ad ≡ 1 (mod q)
.

Main theorem and corollaries (2/2)



Conjectures 



Conjectures about the integral structure

Conjecture

For  with  and , all CMZVs of level  
can be written as a -linear sum of

 

N = qpr p ∈ {2,3} q = 6 − p N

ℤ(p)

(2πi/N )s

s!
ζ (

k1, …, kd

ζa1
N , …, ζad

N )
s, d ≥ 0, k1, …, kd ≥ 1, a1, …, ad ∈ ℤ/Nℤ

a1 ≡ ⋯ ≡ ad−1 ≡ 0, ad ≡ 1 (mod q)
.

Put ℤ(p) = {a /b ∣ b ≢ 0 (mod p)}

Conjecture

All MZVs can be written as a -linear sum of

 

ℤ(2)

{ζ(k1, …, kd) ∣ k1, …, kd ∈ {2,3}} .



Other levels

Let  be a general and put , 

and thus .

N ≥ 3 DN := dimℚ(H(N)
2 /Z(N),𝔪

2 )

dimℚ Z(N),𝔪
2 = (φ(N )/2 + ν(N ) − 1)2 + φ(N ) + ν(N ) − DN

There is an algorithm to calculate .DN

Main theorem implies that .D2r = D3r = 0

Goncharov shows that  for a prime .Dp =
p2 − 1

24
p ≥ 5

It seems those are all known formulas for exact values of .DN



Conjecture (H.-Sato)

Let   (resp. ) be the order of  (resp. )  in .  

Then      and    .

f(p) g(p) 2 3 (ℤ/pℤ)×/{±1}

D2p =
p − 1
2f(p)

− 1 D3p =
p − 1
2g(p)

− 1

What are   and  ?          Is it similar to  ?D2p D3p Dp

The case  or  for prime N = 2p 3p p

Theorem (H.)

Under the same settings,      and    .D2p ≥
p − 1
2f(p)

− 1 D3p ≥
p − 1
2g(p)

− 1



The case  for prime N = 5p p

I have not found any pattern yet.



Other observations

    for a prime . 

 (This was already conjectured by J. Zhao). 

 For  and distinct primes ,   .

Dp2 = (p
4) =

p(p − 1)(p − 2)(p − 3)
24

p

a, b ≥ 1 p, q Dpaqb = Dpq

For , the following is true.N ≤ 400



Sketch of the proof



Hopf structure and coradical filtration (1/2)

Put     and     .A := H/(2πi)𝔪 ζ𝔞(…) = (ζ𝔪(…) mod (2πi)𝔪) ∈ A

Hereafter, we omit  from the notation if there is no risk of 
confusion.

(N )

It is known that  has a Hopf algebra structure: 
    .

A

Δ :A ⊗ A → A

Then  define the coradical filtration  
           

Δ

{0} = C−1A ⊂ C0A ⊂ C1A ⊂ C2A ⊂ ⋯ ⊂ A

Put .grC
d A := CdA /Cd−1A

 induces an isomorphism .Δ grC
d A ≃ grC

d−1A ⊗ grC
1 A ≃ ⋯ ≃ (grC

1 A)d⊗



Hopf structure and coradical filtration (2/2)

We write  for the image of  

in .

ζC (k1, …, kd
ϵ1, …, ϵd) ζ𝔞 (k1, …, kd

ϵ1, …, ϵd)
grC

d A

Theorem (H.)

For , a basis of  is given by 

 

w ≥ d ≥ 1 grC
d Aw

ζC (
k1, …, kd

ζa1
N , …, ζad

N )
k1 + ⋯ + kd = w, a1, …, ad ∈ ℤ/Nℤ

a1 ≡ ⋯ ≡ ad−1 ≡ 0, ad ≡ 1 (mod q)
.

The following is a refinement of the main theorem.



The proof of main theorem is carried out by a purely 
combinatorial argument. 

We only explain the case  for simplicity. 

Note that  in this case.

w = d

grC
d Ad ≃ A⊗d

1



Structure of  A1

For , put .a ∈ ℤ/Nℤ ⟨a⟩ := ζ𝔞( 1
ζa

N)

Theorem (Deligne-Goncharov)

 is spanned by  for  with the following relations: 

, 

           for  , 

       for  and .

A(N)
1 ⟨a⟩ a ∈ ℤ/Nℤ

⟨0⟩ = 0

⟨a⟩ = ⟨−a⟩ a ∈ ℤ/Nℤ

⟨b⟩ = ∑
aM=b

⟨a⟩ M ∣ N b ≠ 0 ∈ Mℤ/Nℤ



Let  with , .N = qpr p ∈ {2,3} q = 6 − p

Put .W := ⨁
a ∈ ℤ/Nℤ

a ≡ 1 (mod q)

ℚ[a] ⊂ ℚ[ℤ/Nℤ]

We can show that the map  is bijective. 

We denote by  the inverse of this bijection.

W → A1; [a] ↦ ⟨a⟩

θ : A1 → W

We write  for .[a1, …, ae] [a1] ⊗ ⋯ ⊗ [ad]

Define  by 

 

ρ = ρd : W⊗d → W⊗d

ρ([a1, …, ad]) = [a1, …, ad] +
d

∑
i=2

[a1, …, ̂ai , …, ad] ⊗ θ(⟨ai−1 − ai⟩)

−
d−1

∑
i=1

[a1, …, ̂ai , …, ad] ⊗ θ(⟨ai+1 − ai⟩)



Proof of main theorem (1/4)

Let  be a modulo  reduction of .ρ̄ p ρ

   Main theorem (for  case) 

   is bijective 

   

   

   is bijective 

  is unipotent

w = d

⇔ ρ

⇔ det(ρ) ≠ 0

⇐ det(ρ) ≢ 0 (mod p)

⇔ ρ̄

⇐ ρ̄
 
Thus main theorem is proved if the unipotency of  is proved. 
(When , )

ρ̄

N ∈ {3,4,8} ρ̄ = id



Proof of main theorem (2/4)

Let  be a mod  reduction of .Wp := ⨁
a ∈ ℤ/Nℤ

a ≡ 1 (mod q)

𝔽p[a] ⊂ 𝔽p[ℤ/Nℤ] p W

Define a subgroup  of  by G (ℤ/Nℤ)× G = {σ ≡ 1 (mod q)}

For , define  by 

  where .

σ1, …, σd ∈ G Φσ1,…,σd
: W⊗d

p → W⊗d
p

Φσ1,…,σd
([a1, …, ad]) := [τ1a1, …, τdad] τj =

j

∏
i=1

σi

By linearity, we extend the definition above to    

for .

Φg1,…,gd

g1, …, gd ∈ 𝔽p[G]



Proof of main theorem (3/4)

For , define   as the subspace 

spanned by elements of the forms 

  where 

 

  where . 

 

Note that  for all but finitely many .

J = (m1, n1, …, md, nd) ∈ ℤ2d VJ ∈ W⊗d
p

Φg1,…,gd ∑
ηi∈U(ni)

[a1 + η1, …, ad + ηd]

U(n) := {(p−nN )ℤ/Nℤ n ≤ r
∅ n > r

gi ∈ Imi
G IG := ker(𝔽p[G] → 𝔽p)

a1, …, ad ≡ 1 mod q

VJ = {0} J



Proof of main theorem (4/4)

We say that   is proper if and only if: 

 for . 

  for   .  

J = (n1, m1, …, nd, md) ∈ ℤ2d

ni ≤ ni+1 i = 1,…, d − 1

ni = ni+1 ⇒ mi = 0 i = 1,…, d − 1

Lemma

For a proper  and , we have 

    

where  runs over all proper tuples greater than  in the 
lexicographic order.

J = (m1, n1, …, md, nd) x ∈ VJ

(ρ̄ − id)(v) ∈ ∑
J′￼

VJ′￼

J′￼ J

This lemma implies the unipotency of , which completes the proof! ρ̄



Thank you for listening! 
谢谢！



Appendix - Table of  for DN N ≤ 250



Appendix - Table of  for DN N ≤ 250



Appendix - Table of  for DN N ≤ 250

See arXiv:2408.15975 for further values. 


