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Today’'s talk

. Introduction and main theorem

. Conjectures

. Sketch of the proof



Introduction and main
theorem



Cyclotomic Multiple Zeta Values

Let uy:={Cy|ae Z/NZ} be the set of N-th roots of unity.

~Definition ( Cyclotomic Multiple Zeta Values (=CMZVs) ) ==

For ki, ....k,€ Z,, and ¢, ...,e; € uy Such that (k;e,;) # (1,1), we define '

m.,..c"d
¢ kl’ cees kd L Z € €,
61, coes €d . kl. kd.

O<my<--<m, T "1y

ki e Ky 1
“(1, 1>= 2 =k ky

my===-m;

* N level. ki, + - + k, . weight. d : depth.



Why do we consider motivic CMZVs ?
Let ZM) := ( cyclotomic MZVs of level N and weight w )@ c C.

What is dimg Z{") ?

* In most cases, the determination of dimgZ™ is too difficult

because It iInvolves transcendental number theory.

* Thus, we consider the dimension of motivic CMZVs instead for
the one of CMZVs.



The motivic CMZVs live in the ring of motivic periods.

p (conj. inj.)
H(N) > (]:
W W
Ak, .k ki, ... k
e e) — (o 0)
motivic CMZVs CMZVs

H™ = @HN : The ring of motivic periods of level N.

w=0

We consider the ring of effective motivic periods of mixed Tate motives
( associated to Q(uy) and (1 —a|a € u\{1}) ® Q C Q(uy)* R Q .

Furthermore, we take the real part when N = 1,2.

Let Z(W™ .= (motivic CMZVs of level N and weight w>@ c HM



The dimension of A

For N > 1 and w > 0, define d™ as follows:

l-2-¢1 N=1
— 1
NYyw «_ —
1= (22 4 y(N))+ W(N) = D2

(¢ 1s Euler’s totient function and v(N) is number of prime divisors of N).

Then the dimension of HV) is given by

dimg HY) = d¥)



Upper bound

ZM-m o gV and dimg HY = d%) implies the following theorem.

— Theorem (Deligne-Goncharov) =y

For N >1and w >0, we have dimgZM™ < d™.

Consequently, dimg Z") < d\™.

The above upper bound is not necessarily strict.

When dimg ZzZ™M™ = dV) (or equivalently z™-™m = ™) ?



Previous results

 When N > 5 is a prime number, '

: (N),m (N)
dimg Z2 < d2 .

..Theorem (Deligne 2010 for N=23.4.8; Brown 2012 for N=1) e

| For N e (123438}, we have

dimg ZV™ = g™

* The above theorem is equivalent to Zz™M™ = W) for N = {1,2,3,4,8}.

* They also give explicit basis for zZ™™ for N = {1,2,3,4,8}.



Main theorem and corollaries (1/2)

From now on, letpe {23}, g=6—-p, N=gp" (r>0).

A basis of H™ is given by

a=-=a;, 1=0,a;,=1 (mod g)

kl""’kd S,dZO, kl""’kdzl’ al,...,adEZ/NZ
Cn's - e CNF

Qi) C™ (

We have dimgZzM™ = gV (= +1)").



Main theorem and corollaries (2/2)

~—Corollary (H.) s

All motivic CMZVs of level N
can be uniquely written as a Q-linear sum of

kl""’kd S,dZO, kl,...,deI, dl,...,adEZ/NZ
Cn's - v CNF a,=-=a; ,=0,a;,=1 (mod g)

Qi)™ (

All CMZVs of level N
can be written as a Q-linear sum of

a; a,

N,ooo, N

. ki,....k, s,d>0,k,...k;>1,a,...,a;,€ ZINZ
(27i)°C
a=-=a;,;=0,a;,=1 (mod q)




Conjectures



Conjectures about the integral structure

Put Z,, = {a/b | b#0 (mod p)}

For N=¢gp" with p € {2,3} and g = 6 — p, all CMZVs of level N

can be written as a Z(p)—linear sum of

a a S S S —
Nl, co ey Nd al = °*°*°* = ad_l — O, ad m— 1 (I'IlOd Q)

(27i/N)* ( kis ..o ky ) 5,d >0, k,...k;> 1, a,....a,€ ZINZ
s!

All MZVs can be written as a Z,-linear sum of

{(Ckyy ..k | kyy ook, € {2,3)}.



Other levels

Let N > 3 be a general and put Dy, := dimgHM/ZM™),

and thus dimg Z{™™ = (@(N)/2 + v(N) — 1)* + ¢(N) + v(N) — Dy,

¥ There is an algorithm to calculate D,.

* Main theorem implies that D,, = D;, = 0.

p*—1

* (Goncharov shows that D, = for a prime p > 5.

¥ |t seems those are all known formulas for exact values of D,.



The case N =2p or 3p for prime p

What are D,, and D;, ? s it similar to D, 2

11 (13 |17 19123 |29 |31 |37 |41 43| ... | &3

113

D 12 | 15 | 22 | 35 | 40 | 57 | 70 | 77 | ... | 330

032

0 1 o020 (1] 2]... 0

-

.

i
O O || Ot
OO N
= Ol

0 o000 ]0 ] 1] 4]0]... 0

, Let f(p) (resp. g(p)) be the order of 2 (resp. 3) In (Z/pZ)*/{*x1}.

— 1
,' Theh D2p prpi — 1 and D3p = % —1

p—1_ d p—1
2f( )

/’ Under the same settings, D,, >




The case N = 5p for prime p

p | 7111317192329 31374143
Dsp O] 28810166 [18]23] 0

p [47[53[59[61[67][71[73]79]83] 89
Ds, |46 126 1 [94] 2 [ 836 1] 0 [317

| have not found any pattern yet.




Other observations

For N <400, the following is true.

for a prime p.

% ~(p\ plp—Dp-2(p-3)
Pr=\4)= 24

(This was already conjectured by J. Zhao).

% For a,b > 1 and distinct primes p,q, D,.,» =D,



Sketch of the proof



Hopf structure and coradical filtration (1/2)

Hereafter, we omit (N) from the notation if there is no risk of
confusion.

« PUutA:=H/Qri), and ¢°%..)=(™...) mod (2xi),) € A.

* |t 1Is known that A has a Hopf algebra structure:
AARA - A.

* Then A define the coradical filtration

* Put grfA := C,A/C,_,A.

* A induces an isomorphism grfA ~ grf A ® grfA ~ .- ~ (gr{ A)*®.



Hopf structure and coradical filtration (2/2)

€1, -0y €y

* We write ¢€ <kl’ kd) for the image of ¢¢ <I;1 ];d>
1> ceeo d
in grfA.

* The following is a refinement of the main theorem.

‘Theorem (H.)

For w>d > 1, a basis of gr{A,, is given by

e ki,....k, ki+--+k;=w,a...,a; € ZINZ
- a;_q = O, adE 1 (mod Q)

ay




The proof of main theorem Is carried out by a purely
combinatorial argument.

We only explain the case w = d for simplicity.

Note that grfA, ~ A®? in this case.



Structure of A,

For a € Z/INZ, put (a) := C“( : )
CH

Theorem (Deligne-GoncharoV) s

| AV is spanned by (a) for a € Z/Nz with the following relations:
L+ (0)=0,
L * (a) = (—a) for a € Z/INZ,

% (D) = Z (a) forM|Nand b+ 0e€ MZ/NZ.



*

Let N=gp" with p € {2,3}, g =6 —p.

Put W := @ Q[a] C Q[Z/NZ].

a€ ZINZ
a=1 (mod g)

We can show that the map W — A;;[a] — (a) IS bijective.

We denote by 6: A, - W the inverse of this bijection.

We write [qa,...,a,] TOr [¢;]] ® -+ ® [a,].

Define p = p,: W& - W& py

d
pllay, ...,a;]) = lay, ...,a,] + Z lag, ..., a,...,a;] ® 0(a,_, — a;))
i=2

d—1
—Z lay,.... a;,...,a;] @ O({a,,, — a;))
i=1



Proof of main theorem (1/4)
Let p be a modulo p reduction of p.

Main theorem (for w = d case)
< p IS bijective
& det(p) # 0
& det(p) #0 (mod p)
< p Is bijective

< p IS unipotent

Thus main theorem is proved If the unipotency of p Is proved.

(When N € {3.,4,8}, p = id)



Proof of main theorem (2/4)

Let W, := @ Flal C F,[Z/NZ] be a mod p reduction of W.

a€ ZINZ
a=1 (mod g)

Define a subgroup G of (Z/NZ)* by G={c=1 (mod g)}

For oy, ...,0, € G, define @, : W2 - W2 by

J
(I)O.l,.“,ad([al, ,ad]) = [Tlal, ...,Tdad] Where 7{] —_ Hai.
i=1

By linearity, we extend the definition above to @,

for g;,....g; € F[G].



Proof of main theorem (3/4)

* For J=(my,ny,....myny) € 7*, define v, e W®? as the subspace

spanned by elements of the forms
)

(Dgl,-.-,gd 2 [Cll + His ---5 Ay + }/]d] Where
neU(n;) )

* U = {(p_ NYZINZ n<r
%) n>r

* g €1, where I; := ker(F,[G] — F).

¥ dp,...,a;=1 mod g

Note that Vv, = {0} for all but finitely many J.



Proof of main theorem (4/4)

We say that J=(n,m,,...,n;my) € Z*¢ is proper if and only if:
* n,<n,, fori=1,.,d-1.
* n.=n,,>m=0 for i=1,.,d-1.

T - 1 1T T ————

| For a proper J = (m,n,,...,myny) and x € V,, we have
(p—idv) e YV,
r

i where J' runs over all proper tuples greater than J in the
i lexicographic order.

This lemma implies the unipotency of p, which completes the proof!



Thank you for listening!
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Appendix - Table of D, for N <250

N (3|45 7181911011 |12 | 13 | 14
Dy 001 21010710 o 0 7 0

N (15116 |17 | 18 |19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29
Dy | O |0 (12} 0 (1500|022 0|5 |0] 0] 01|35

N |30 |31 323334 [35|36 |37 |38 |39 |40 |41 | 42 | 43 | 44
Dy | O 401 0 | O | 1 O 0 |57] 0 1 10|70 |77 0

N |45 |46 | 47 | 48 | 49 |50 | 51 | 52 | 53 | 54 | b5 | 56 | 57 | 58 | 59
Dy |1 01019210 (3000 (117} 0] 2| 01] 0] 0| 145

N |60] 61 |62 63 |64|65 |66 | 67 | 68|69 |70 | 71 72| 73 | 74
Dy | O | 186 2 | 0|0 | 8|0 |18 | 1|0 ] 0 (210 0 ]222] 0

N |7 |76 |77 |78 79 |80 | 81 | 82 | 83 | 84 | 8 | 8 | 87 | 88 | 89
Dy OO0 (1501260 0 | 0 |1 (287 0| 81| 2|0 0330




Appendix - Table of D, for N <250

N {9091 192193 |94 |95 |96 | 97 |98 |99 | 100 | 101 | 102 | 103 | 104
Dy | 0 (3270 00711013920 425 | 0 | 442 | O
N | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119
Dy | O 0O (477 0 | 495 | O 1 0 | 932 | O 0 0 1 0 72
N | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134
Dy | 0 330 O 4 2 20 0 (672 O 0 0 (715 ] O 99 0
N | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149
Dy | O 1 [ 782 | 0 [ 805 | O 0 0 |240| O 16 3 0 0 | 925
N | 150 | 151 | 152 | 153 | 1564 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164
Dy | 0 1950 ] O 0 0 6 0 | 1027 | O 0 0O | 165 | O | 1107 | 1
N | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179
Dy | O 0O |1162 | O | 715 | O 0 2 11247 | O 0 0 0 3 | 1335




Appendix - Table of D, for N <250

See arXiv:2408.15975 for further values.

N | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194
Dy | 0 [ 1365 | O 9 0 18 0 (440 | O 0 0 1520 | O | 1592 | 1
N |195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209
Dy | O 0 |1617 | 0 | 1650 | O 2 0 1294 | O 23 0 0 0 | 985
N | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224
Dy | 0 [ 185 | O 0 0 0 0 | 345 | 2 o 0 | 720 0 | 2072 | O
N | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
Dy | O 3 | 2147 | 0 |218 | O 0 0 |2262 | O 46 0 0 0 | 2380
N | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250
Dy | 0 2420 | O 0 0 0 0 | 954 | 2 0 0




